Регулируемый светодиодный драйвер

Повышающие преобразователи LM3502/3503 для светодиодных приложений

Микросхемы LM3502 и LM3503 — светодиодные драйверы, используемые для подсветки жидкокристаллических дисплеев. Максимальный выходной ток — 30 мА. Драйверы предназначены для управления цепочкой от 2 до 10 светодиодов, причем цепочка разделена на 2 секции, каждая из которых может содержать от 1 до 5 светодиодов. Данные микросхемы являются оптимальным решением для управления двумя дисплеями, но могут также управлять и одним дисплеем, подсветка которого требует большего числа светодиодов. Драйверы содержат две встроенных обходные цепи с ключами на полевых транзисторах, управляемых сигналами EN1 и EN2. Если ключ находится в открытом состоянии, то ток протекает в обход данной секции, что выключает соответствующие светодиоды. В разомкнутом состоянии светодиоды соответствующей секции горят, поскольку ток через них протекает. Если необходимо объединить обе секции для подсветки одного дисплея, то входами EN1 и EN2 управляют синхронно.

Драйверы позволяют работать в двух режимах: управление по току с широтно-импульсной модуляцией как основной, а также управление по току с частотно-импульсной модуляцией при незначительной нагрузке по выходу.

Защитные функции включают в себя: отключение при перегреве, отключение при пониженном уровне входного напряжения и защита от перенапряжения по выходу.

Средний ток, протекающий через светодиоды, может регулироваться. При этом изменяется средняя интенсивность излучения, то есть драйвер поддерживает функцию диммирования. В LM3502 изменение интенсивности осуществляется сигналом с широтно-импульсной модуляцией, подаваемым на вход CNTRL. Этот сигнал имеет логические уровни и может формироваться микроконтроллером или иной логической схемой. Поскольку рабочая частота коммутации составляет 1 МГц, то оптимальная частота сигнала диммирования лежит в пределах от 200 до 500 Гц.

Различие между LM3503 и LM3502 — в управлении диммированием. Вход CNTRL в LM3503 аналоговый, управление диммированием осуществляется в диапазоне от 0,2 до 3,5 В по линейному закону. При напряжении ниже 0,2 В светодиоды выключены, при напряжении выше 3,5 В — горят в полный накал. Соответственно, LM3503 допускает и диммирование с помощью ШИМ-сигнала (как в LM3502), но при этом уровень «нуля» должен быть ниже 0,2 В, а уровень «единицы» — выше 3,5 В.

LM3502 и LM3503 выпускаются в нескольких модификациях: выходное напряжение может иметь значения 16, 25, 35 и 44 В. Корпуса микросхем LM3502 и LM3503 — microSMD-10 или LLP-16.

Типовая схема включения (на примере LM3502) приведена на рис. 2.

Регулируемый светодиодный драйвер
Рис. 2. Типовая схема включения драйвера LM3502

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении

При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как сделать драйвер для светодиодов своими руками

Собрать схему драйвера светодиодной лампы сможет любой начинающий мастер. Но для этого потребуется аккуратность и терпение. С первого раза стабилизирующее устройство может не получиться. Чтобы читателю было понятнее, как выполняется работа, предлагаем несколько простейших схем.

Как можно убедиться, ничего сложного в схемах драйверов для светодиодов от сети 220 В нет. Попробуем рассмотреть пошагово все этапы работ.

Пошаговая инструкция изготовления драйвера для светодиодов своими руками

Фото пример Выполняемое действие
Для работы нам понадобится обычный блок питания для телефона. С его помощью все выполняется быстро и просто.
После разборки зарядного устройства в руках у нас уже практически полноценный драйвер для трех одноваттных светодиодов, однако его нужно немного доработать.
Выпаиваем ограничительный резистор на 5 кОм, который находится возле выходного канала. Именно он не дает зарядному устройству подать слишком большое напряжение на сотовый телефон.
Вместо ограничительного впаиваем подстроечный резистор, выставив на нем те же 5кОм. Впоследствии добавим напряжение до необходимого.
На выходной канал припаивается 3 светодиода по 1 Вт каждый, соединенные последовательно, что в сумме даст нам 3 Вт.
Находим входные контакты и отпаиваем от печатной платы. Они нам уже не нужны…
…а на их место припаиваем сетевой шнур, по которому будет подаваться питание 220 В.
При желании в разрыв можно поставить резистор на 1 Ом, выставить амперметром все показатели. В этом случае диапазон затухания светодиодов будет шире.
После полной сборки проверяем работоспособность. Выходное напряжение 5 В, светодиоды пока не светятся.
Поворачивая регулятор на резисторе видим, как LED-элементы начинают «разгораться».
Популярные статьи  Цветок из бумаги «Гармония»

Будьте внимательны. От такого преобразователя можно получить разряд не только в 220 В (от сетевого шнура), но и удар порядка 450 В, что довольно неприятно (проверено на себе).

Очень важно! Перед тем, как проверить драйвер для светодиодов на работоспособность и подключить к источнику питания, стоит еще раз визуально проверить правильность собранной схемы. Поражение электрическим током опасно для жизни, а вспышка от короткого замыкания может причинить вред глазам.

Разновидности светодиодных драйверов

Есть несколько типов преобразователей для полупроводниковых источников света. Основные типы – линейный и импульсный. Каждый из них создается для своих целей и имеет свои нюансы.

Линейный

Этот тип применяют часто. Его сборка, при наличии всех деталей, может длиться 5-10 минут. Наладка ему почти не нужна – он начинает работать сразу.

В схеме присутствует линейный стабилизатор тока, который можно представить как переменный резистор, управляемый электронной схемой.

При подаче входного напряжения оно идет на регулирующий элемент и затем на схему (КТ) контроля тока. После этого оно появляется на выходе, к которому подсоединена нагрузка. Узел КТ проверяет ток и в зависимости от этого меняет сопротивление регулирующего элемента.

Недостаток подобного устройства – низкий КПД.

Импульсный

В основе этого типа драйвера лежит другой принцип. Регулирующим элементом здесь выступают ключи с трансформатором. При подаче напряжения на обмотках начинает запасаться энергия (в магнитном поле). Ток постепенно возрастает.

Как только он достигнет нужной величины, произойдет переключение ключей. Запасенная энергия пойдет в цепь, и ток начнет уменьшаться. По достижении минимального значения вновь сработают ключи и процесс повторится.

Срок годности

Драйвер рассчитан примерно на 30 000 часов. Это немого меньше, чем расчетный срок службы многих светодиодных светильников. Такое уменьшение связано с неблагоприятными факторами, в которых приходится работать стабилизатору тока.

Что негативно влияет на работу драйвера:

  • скачки напряжения в электросети;
  • изменения температуры и/или влажности.

Если прибор мощностью 200 Вт имеет нагрузку 100 Вт, то 50 % номинального значения возвращается в сеть. Это может вызвать перегрузку и сбои питания.

Чтобы продлить работу драйвера, его необходимо эксплуатировать в помещениях с нормальной (не повышенной) влажностью, и подключать к сети с качественным, без скачков, напряжением.

Виды драйверов по типу конструкции

Драйвера для LED-элементов представляют собой небольшую электронную схему, собранную из резисторов, конденсаторов и полупроводниковых диодов, размещённых на плате.

Устройства, стабилизирующие ток для светодиодов, выпускаются в 2 версиях:

  • В корпусе. Это наиболее распространённый вариант. Стоимость такого прибора выше. Его главный плюс – защита конструктивных элементов от влаги и пыли.
  • Без корпуса. Их применение оправдано только при скрытом монтаже. Они дешевле корпусных аналогов.

Преобразователи по конструктивному исполнению делят на три группы.

Электронный

В электронном преобразователе за коррекцию тока отвечает транзистор. Его задача – разгрузка регулировочной микросхемы. Чтобы максимально сгладить пульсацию, на выходе схемы установлен конденсатор.

Электронные устройства дорого стоят, но стабилизируют ток максимум до 750 мА. Новейшие драйверы такого типа обычно устанавливают на лампы с цоколем Е27.

Главные недостатки – пульсации и помехи в высокочастотном диапазоне. Если в одну розетку со светильником включить бытовые приборы, например, радиоприёмник, появляются помехи на FM-частотах. .

В хорошем электронном драйвере должно быть сразу два конденсатора:

  • электролитический, который сглаживает пульсации;
  • керамический, который понижает высокие частоты.

Такое сочетание встречается редко, особенно в драйверах китайского производства. Пользователи, разбирающиеся в микросхемах, могут получать выходные параметры драйвера, меняя номиналы резисторов.

Благодаря высокому КПД – около 95 % – электронные драйверы используют для самых разных целей (для обеспечения работы автомобильных светодиодных ламп, уличного и бытового освещения).

На основе конденсаторов

Несколько меньшей популярностью пользуются драйверы, работа которых основана на использовании конденсаторов. Почти все схемы бюджетных LED-ламп с такими устройствами имеют похожие характеристики.

Из-за изменений, вносимых производителями в электрические цепи, из них могут удаляться кое-какие элементы. Особенно часто в них отсутствует конденсатор, отвечающий за сглаживание пульсаций.

Плюсы драйверов на конденсаторах:

  • простота конструкции;
  • КПД стремится к 100 %, так как потери мощности наблюдаются только на резисторах и переходах полупроводниковых элементов.

Диммируемый

Диммер – устройство, регулирующее яркость светодиодов. Многие современные драйверы имеют в своём составе эти полезные приспособления.

Плюсы диммируемых драйверов:

  • пользователь выбирает уровень освещённости, комфортный для текущего момента;
  • включение диммера в стабилизаторы тока позволяет экономно расходовать как электроэнергию, так и ресурс светодиодов.

Варианты исполнения:

  • Диммирующее устройство располагается между питанием и LED-светильником. Такой прибор управляет электроэнергией, подаваемой на светодиоды. Обычно это широтно-импульсные стабилизаторы (ШИМ), корректирующие величину тока.
  • Устройство управляет источником питания. Оно выполняет коррекцию тока. Меняется яркость и цвет диодов.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Популярные статьи  Плетение серьги из бисера своими руками - схемы и пошаговые мастер-класс для начинающих, оригинальные и стильные фото идеи

Преимущества импульсных блоков:

маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

КПД от 90 до 98%

напряжение питания можно подавать в большом разбросе

при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

усложненность сборочной схемы

сложная конструкция

если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Параллельное соединение светодиодов не правильное

Параллельное соединение светодиодов используют, когда напряжение блока питания (источника) не хватает, для того, чтобы запитать ряд последовательных светодиодов. Если «конкретно теоретически», то параллельно светодиоды можно подключать и «тупо» — соединить все аноды и катоды LEDs. После чего подключить их к батарее и вуаля… Светодиоды горят! Причем единожды и на краткое время при подключении. Далее — конец им.

Такая схема подключения параллельно светоизлучающих диодов — не работоспособна, ввиду того, сопротивление диода маленькое и спокойно провоцирует режим КЗ (короткого замыкания).

Сразу откину некоторых злопыхателей. Есть, конечно, исключения… Ими грешат китайские производители дешевизны. Но это исключение из правил. Если кто-то разбирал китайские игрушки или зажигалки, то наверняка видел именно такую схему подключения. Где диоды подключены параллельно, не имея в свей цепи никаких посторонних электронных компонентов. Почему? Да все просто — в таких цепях ток ограничивается внутренним сопротивлением батареек AG1 (таблетка). Мощность в таких таблетках минимальна и не может нанести вред диоду. Т.е. мы опять приходим к выводу, что для нормального функционирования, диодам нужен резистор.

Повторюсь еще раз — параллельное соединение светодиодов используют только тогда, когда источник питания низковольтный.

Не смотря на то, что такой тип соединения не очень приветствуется, его частенько используют. В таких типах соединений есть одно правило — параллельное соединение светодиодов никогда не происходит с использованием ТОЛЬКО ОДНОГО резистора!!!

Ну или для тех, кто понимает только визуальные картинки, то не правильное параллельное соединение будет выглядеть так:

К сожалению, не смотря на то. что такое подключение не правильное, опять же, вездесущие китайцы тоже используют его во всю… Особенно в фонариках. Для этого им завышают номинал резистора, дабы не было перегрузки и товар преспокойненько может проработать год… А может и не проработать… Тут уж как повезет.

Как подобрать драйвер для светодиодов

Необходимо сразу заметить, что резистор не может являться полноценной заменой драйверу, поскольку он не в состоянии защитить светодиоды от перепадов в сети и импульсных помех. Также не лучшим вариантом будет использование линейного источника тока вследствие его низкой эффективности, ограничивающей возможности стабилизатора.

Китайцы никогда не заботились об объемах наполнения – все в стиле минимализма

При выборе LED-драйвера для светодиодов стоит придерживаться следующих основных рекомендаций:

  • приобретать стабилизатор тока лучше всего одновременно с нагрузкой;
  • учитывать падение напряжения на СИД;
  • ток высокого номинала уменьшает КПД светодиода и приводит его перегреву;
  • учитывать мощность нагрузки, подключаемой к драйверу.

Также необходимо обращать внимание, чтобы на корпусе стабилизатора была указана его мощность, рабочие диапазоны входного и выходного напряжения, номинальный стабилизированный ток и степень влаго- и пылезащищенности устройства

Как выбрать драйвер?

Большая часть драйверов для LED-освещения, продаваемых на отечественном рынке, производится в Китае, стоит дёшево, и не отличается высоким качеством.

В китайских драйверах светодиодных ламп часто встречаются бракованные микросхемы, покупать их не рекомендуется. Такое устройство быстро выходит из строя, и вряд ли удастся его обменять на новое или вернуть деньги.

Советы по выбору LED-драйвера:

Берите стабилизатор тока вместе с нагрузкой. Учитывайте мощность нагрузки, которая будет подключена к драйверу

Обратите внимание на корпус. На нём должна быть указана мощность, диапазоны напряжения (входного и выходного), номинальное значение стабилизированного тока, класс влаго- и пылезащищённости

Максимальная мощность драйвера

Напряжение на выходе зависит от количества диодов в цепи и от схемы их включения. Оно должно быть больше или равно сумме энергии, потраченной каждым блоком электрической схемы.

Номинальный ток определяется мощностью элементов и их яркостью. Цель стабилизатора – обеспечить диоды нужной энергией.

Общая мощность светодиодов определяется параметрами каждого элемента, их числом и цветом. Количество потребляемой энергии считают по формуле:

P = PLED х N, где N – число диодов в цепи, PLED – мощность одного диода.

Номинал берут на 20-30 % больше расчётной мощности:

Pmax ≥ (1,2..1,3) * P.

Учитывают также цвет свечения элементов. Он влияет на выходное напряжение. Его указывают прямо на устройстве или на упаковке.

Например, имеется три светодиода мощностью по 3 Вт. Тогда общая мощность составляет 9 Вт. Рекомендуемая Pmax драйвера = 9 х 1,3 = 11,7 Вт.

Стоимость

Драйверы для LED-освещения продаются в электротехнических магазинах, в Интернете, в торговых точках, где занимаются радиодеталями. Дешевле всего обходится покупка на Интернет-площадках.

Примерные цены на стабилизаторы тока:

  • DC12V (мощность 18 Вт, входное напряжение 12 В, выходное 100-240 В) – 190 рублей;
  • LB0138 (6 Вт, 45 В, 220 В) – 170 рублей;
  • YW-83590 (21 Вт, 25-35 В, 200-240 В) – 690 рублей;
  • LB009 (150 Вт, 12 В, 170-260 В) – 750 рублей.

Микросхема PT4115 – понижающий преобразователь – стоит 150 рублей за одну штуку. Более мощные элементы стоят от 150 до нескольких тысяч рублей.

Другие характеристики

При покупке драйвера обратите внимание на такие характеристики:

  • Напряжение на выходе. Его величина зависит от числа светодиодов в светильнике, от способа подачи питания и падения напряжения на полупроводниках. На рынке имеются устройства с напряжением от 2 до 50 В и более.
  • Номинальный ток. Он должен быть достаточным для обеспечения оптимальной яркости.
  • Цвет светодиодов. Он влияет на падение напряжения.

Зависимость электрических параметров от цвета светодиодов:

Цвет Падение напряжения, В Сила тока, А Потребляемая мощность, Вт
Красный 1,6-2,04

350

0,75
Оранжевый 2,04-2,1 0,9
Жёлтый 2,1-2,18 1,1
Зелёный 3,3-4 1,25
Синий 2,5-3,7 1,2

Если в источнике света три последовательно соединенных светодиода белого света мощностью 1 Вт, понадобится драйвер с напряжением 9-12 В и током 350 мА.

Падение напряжения на белых кристаллах – 3,3 В. При последовательном соединении напряжения суммируют. Получается 9,9 В, что удовлетворяет рабочий диапазон драйвера.

В зависимости от модификации, устройства используют для определённого количества светодиодов – одного, двух или более.

Например, LED-драйверы с микросхемой 9918c в светодиодной лампе подходят для управления нерегулируемыми лампами и поддерживают мощность до 25 Вт.

Популярные статьи  Мал золотник, да дорог. Гравер и Шлиф круг в одном

Индуктивные повышающие светодиодные драйверы

Когда минимальное прямое напряжение всех светодиодов в последовательной цепочке превысит максимальное входное напряжение, необходимо будет использовать повышающий преобразователь напряжения. Индуктивный повышающий преобразователь является лучшим решением, которое может обеспечить ток, проходящий через цепочку светодиодов, от 350 мА и выше, изменяя, при необходимости, значение выходного напряжения.

Поскольку повышающие импульсные стабилизаторы (так называемые бустеры) неоднократно рассматривались в публикациях по источникам питания , то принципы их работы рассматриваться не будут. Просто отметим, что существенным качеством устройств этого типа является возможность непрерывно изменять свой коэффициент усиления (при помощи широтно-импульсной или частотно-импульсной модуляции), что позволяет стабилизировать яркость светодиода.

Отметим также, что наличие специальных входов позволяет осуществлять диммирование светодиода, то есть плавную регулировку его яркости. Как правило, частота диммирования меньше частоты коммутации в 1000–5000 раз, что исключает какое-то влияние на рабочий цикл схемы.

Повышающий преобразователь характеризуется и тем, что встроенный ключ выдает на выход меньший ток, нежели ток на входе. Причем, чем выше разница между выходным (VOUT) и входным (VIN) напряжением, тем больший ток отбирается от входного источника. Если при фиксированном выходном токе увеличивать число светодиодов в цепочке (соответственно, увеличится и выходное напряжение драйвера), то может быть превышен максимальный ток нагрузки для источника входного напряжения.

Типовой топологией для таких драйверов является последовательное включение светодиодов. Данная топология предполагает, что все светодиоды связаны от одного провода в цепочку, один за другим, то есть управляющий сигнал драйвера соединен с анодом первого светодиода, катод предыдущего светодиода соединен с анодом следующего, а катод последнего с токозадающим резистором или соответствующим выводом микросхемы. Основным преимуществом этой топологии является наличие единственного вывода в микросхеме драйвера, управляющего светодиодами, что гарантирует одинаковый ток, протекающий через все светодиоды.

Номенклатура индуктивных повышающих светодиодных драйверов, выпускаемых фирмой National Semiconductor, приведена в таблице. Рассмотрим некоторые из них более подробно.

Таблица. Параметры индуктивных повышающих светодиодных драйверов
Регулируемый светодиодный драйвер

Индуктивные повышающие преобразователи LM3551/3552 — драйверы мощных светодиодов

LM3551 и LM3552 — импульсные повышающие преобразователи, предназначенные для управления от 1 до 4 мощных светодиодаов. Драйверы способны выдать в нагрузку ток до 700 мА при питании от одной Li-Ion батареи. Драйверы работают в режиме управления по току на фиксированной рабочей частоте коммутации, равной 1250 кГц.

Характерной особенностью является наличие двух режимов работы: LM3551 и LM3552 могут управлять одним или несколькими мощными светодиодами в режиме повышенной мощности Flash (выходной ток до 700 мА) или в режиме нормальной мощности Torch (выходной ток до 200 мА), переключение между которыми осуществляется подачей соответствующего логического уровня на вход Torch/Flash.

Внешний вывод отключения нагрузки SD (LM3551) или разрешения EN (LM3552) выполняют одну и ту же роль, но имеют противоположную полярность. Назначение выводов — включение и выключение светодиодов при наличии входного питания. В течение отключения резисторы обратной связи и нагрузка отключены от входа, чтобы обрывает пути утечки тока на «землю».

Второй особенностью этих микросхем является наличие функции тайм-аута. Выбор номинала конденсатора на входе FTO дает возможность запрограммировать максимальный интервал времени включения светодиодов. По истечении этого времени ключи FET-T и FET-F будут разомкнуты и светодиоды погаснут.

Выбор номинала конденсатора, подключенного к входу SS, позволяет программировать параметры режима плавного запуска. Данный режим предназначен для исключения больших бросков тока в процессе включения светодиодов. Схема защиты от перенапряжений и высокая частота коммутации дает возможность использовать малогабаритные, недорогие выходные конденсаторы с низкими номинальными напряжениями, что, как уже отмечалось, положительно сказывается на габаритах и стоимости изделия.

Микросхемы LM3551 и LM3552 выполнены в низкопрофильном корпусе LLP-14. Типовая схема включения представлена на рис. 5.

Регулируемый светодиодный драйвер
Рис. 5. Типовая схема включения LM3551

Что купить?

Мы проанализировали большое количество отзывов с форумов и самой площадки AliExpress и подготовили для вас свою подборку драйверов, которые подойдут для решения многих задач:

  1. Универсальный драйвер 5-24 Вольт, 2-4 Ампера, маленькие габариты. Входящее напряжение 85-260В. Есть множество вариантов компактного исполнения 5В, 2А; 12В,4А; 24В, 4А и другие. Цена очень приятная, от 2 до 30 долларов (зависит от мощности, самый дорогой 30 баксов = самый мощный 5В, 350Вт). Мы нашли самое выгодное предложение, продавец проверенный, отправляет быстро и качественно упаковывает. Только положительны отзывы. Посмотреть товар на AliExpress.
  2. Драйвер для светодиодных лампочек. Этот вид преобразователей в основном используется в лампочках и маленьких светильниках. Маленькие габариты и низкая цена. Входное напряжение 200-240В. Исходящее постоянное напряжение (DC) зависит от нагруженной мощности и может составлять 24-160 Вольт, соответственно мощность при этом составит 8-50 Вт. Мы также подобрали самое выгодное предложение с большим количеством заказов и положительных отзывов. Посмотреть товар на AliExpress.
  3. Еще один для лампочек. Этот товар такой же как и выше, но у этого продавца больше вариантов выбора по питанию и напряжению, возможно тут вы подберете то, что нужно именно вам. Посмотреть товар на AliExpress.
  4. Драйвер для светодиодных светильников и лент. Данный тип драйверов позволяет подключать светодиодные ленты и светильники. Входящее напряжение 110-260 Вольт. Максимальная нагрузка 300 Вт. Выходное напряжение 12 и 24 Вольта. Посмотреть товар на AliExpress.

Купить драйвер на AliExpress

Технические характеристики

При покупке светодиодного светильника может возникнуть потребность в покупке драйвера, если осветительное устройство не имеет преобразователя тока.

Основные характеристики:

  • ток на выходе, А;
  • рабочая мощность, Вт;
  • напряжение на выходе, В.

Выходное напряжение может меняться. Оно зависит от схемы подключения к питанию и числа светодиодов. От величины тока зависит уровень яркости и мощность.

Чтобы диоды светили ярко и не притухали, на выходе драйвера ток поддерживается на заданном уровне. Мощность преобразователя должна быть несколько выше, чем суммарное количество Вт всех диодов.

Для расчета мощности драйвера применяют формулу: P = P (led) × X где:

  • P (led) – это мощность одного светодиода;
  • Х – количество диодов.

Если расчетная мощность получилась 10 Вт, драйвер надо брать с запасом на 20-30 %.

Оцените статью
Денис Серебряков
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Регулируемый светодиодный драйвер
Как приготовить Хе из свежей рыбы по-корейски