Последовательность действий по переделке БП ATX в регулируемый лабораторный.
1. Удаляем перемычку J13 (можно кусачками)
2. Удаляем диод D29 (можно просто одну ногу поднять)
3. Перемычка PS-ON на землю уже стоит.
4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.
5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.
8. Меняем плохие : заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (. 2-ю ногу), С26, J11 (. 3-ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем-то рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
12. Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите тут .
2.8 4 голоса
Рейтинг статьи
Особенности интерфейса
В магазинах встречается два типа БП: программируемые и стандартные. В первом случае выходное напряжение задается при помощи специальной клавиатуры или вспомогательными клавишами. После чего в контуре стабилизации тока происходит формирование заданного параметра. Также за качество преобразования отвечает цифроаналоговый преобразователь (ЦАП). Пользователю достаточно ввести показания, после чего блок питания автоматически подстроиться, но будет присутствовать небольшая погрешность.
В стандартных БП напряжение и ток задаются при помощи переменного резистора. Этот элемент подключается к контуру обратной связи. Вся информация отображается на дисплее в режиме реального времени. Человеку достаточно вращать элемент в нужную сторону, чтобы добиться соответствующего результата. Подобное решение отличается своей экономичностью, поэтому присутствует во многих дешевых приборах.
У некоторых непрограммируемых лабораторных БП присутствует одна особенность: при включении или отключении устройства, возникает кратковременный скачок напряжения. Если в это время было подключено устройство, то это может обернуться для радиоэлементов трагично, так как они сломаются
Поэтому важно уточнить у консультанта наличие такой проблемы, чтобы избавить себя от непредвиденных обстоятельств
Последнее, на что важно обратить внимание, – индикация. Если человек покупает программируемое оборудование, ток и напряжение будут отображаться на удобном жидкокристаллическом дисплее, что упростит работу. Но если приобретается обычный лабораторный блок питания, то следует быть готовым к стрелочной индикации, которая уступает в точности предыдущему экземпляру
Но если приобретается обычный лабораторный блок питания, то следует быть готовым к стрелочной индикации, которая уступает в точности предыдущему экземпляру.
Импульсный блок питания
В наши дни преимущественное большинство используемых блоков питания – это агрегаты импульсного типа. Эти блоки представляют собой фактически инверторную систему
Принцип их работы прост – происходит предварительное выпрямление входного напряжения, после чего оно преобразуется в импульсы с увеличенной частотой и необходимыми параметрами скважности. В импульсных блоках питания используются небольшие трансформаторы, которых более чем достаточно, поскольку увеличение частоты повышает эффективность трансформатора, а значит нет необходимости в больших габаритах
Нередко сердечник трансформатора изготавливается из ферромагнитных материалов, что, помимо всего прочего, существенно облегчает конструкцию.
Что же обеспечивает стабилизацию напряжения? Эту функцию берёт на себя отрицательная обратная связь, которая поддерживает выходное напряжение на одном уровне. При этом не учитывается величина нагрузки и колебания входного напряжения. Импульсный блок питания, также возможно сделать, своими руками, но в этом случае основными компонентами являются, линейный регулятор — LM7809, либо ШИМ контроллер TL494, а также импульсный трансформатор Т1.
Схема простого импульсного блока питания
Наиболее востребованным среди профессионалов импульсным агрегатом, который пользуется спросом и среди любителей, и среди профессионалов, считается импульсный блок питания MAISHENG MS305D – эталон компактности и удобства. Этот лабораторный источник импульсного типа идеально подходит для стабильной работы самых разных электронных схем и устройств. Конструкцией предусмотрена возможность настраивать параметры переменного тока в диапазоне от 0 до 5 А и напряжения от 0 до 30 В, защита от кз, перегрева и перегрузки по току. Данная модель укомплектована плавными регуляторами, которые облегчают точный подбор напряжения и тока. Прибор оснащен удобным цифровым дисплеем, на котором в реальном времени отображаются параметры напряжения и переменного тока.
Схемы блоков питания
Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:
- однополярный;
- двуполярный;
- лабораторный импульсный.
Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).
Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична
Импульсный трансформатор
Простой лабораторный
Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:
- понижающий трансформатор Tr ( 220/12…30 В);
- диодный мост Dr для выпрямления пониженного переменного напряжения;
- электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
- потенциометр для регулировки выходного напряжения Р1 5 кОм;
- сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
- два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
- для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.
В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.
Схема простого БП
К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.
Печатная плата простого БП
Двухполярный источник питания
Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.
Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения
Двухполярный ИП на транзисторах
Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.
Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.
Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).
Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.
Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.
Лабораторный импульсный бп
Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.
Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.
Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.
Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.
Схема импульсного блока питания
Данный источник питания собран на микросхеме TL494.
Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности
Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.
Особенности сборки схемы:
- для минимизации потерь при выпрямлении используют диоды Шоттки;
- ESR электролитов в фильтрах на выходе должен быть как можно ниже;
- дроссель L6 от старых БП применяют без изменения обмоток;
- дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
- Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
- для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.
Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.
Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится
Переделка БП ATX в регулируемый или лабораторный блок питания
А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ-контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).
Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.
Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.
Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.
Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.
Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.
Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.
Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.
Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.
Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.
Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.
Линейный блок питания
Традиционным блоком питания является линейный блок. Его конструкция состоит из автотрансформатора и понижающего трансформатора. Также имеется выпрямитель, который преобразует переменное напряжение в постоянное. Преимущественное большинство моделей укомплектовано выпрямителем, состоящим из одного или четырёх диодов, составляющих так называемые диодный мост. При этом есть и другие конструкционные схемы, но они используются гораздо реже. В некоторых моделях после выпрямителя может быть инсталлирован специальный фильтр, который стабилизирует колебания в сети. Как правило, эту функцию выполняет высокоемкостный конденсатор. В некоторых моделях предусмотрены фильтры высокочастотных помех, стабилизаторы тока и напряжения и многое другое. Простейший линейный блок питания, возможно, сделать своими руками, при этом, основным и самым дорогим компонентом является понижающий трансформатор – Т1.
Схема линейного блока питания
Среди мастеров, которые специализируются на ремонте и обслуживании электроники и радиотехники, самым востребованным линейным блоком питания считается модель с выходными характеристиками напряжения в регулируемом диапазоне 0-30 В и тока в диапазоне 0-5А, например — источник питания постоянного тока YIHUA-305D . Этот блок представляет собой высокоточный агрегат, с помощью которого можно легко и тонко настраивать параметры переменного тока и напряжения в установленных номинальных рамках. Оборудование функционирует в двойном режиме – цифровой индикатор одновременно показывает актуальные показатели напряжение и выходного тока. Кроме того, данная модель имеет режим защиты от короткого замыкания (кз), перегрузки по току и функцию самовосстановления.
Как собрать лабораторный блок из китайских модулей
На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.
ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.
Плата импульсного преобразователя 220VAC/26VDC.
В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.
Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.
При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.
Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.
Цифровой блок вольтметр-амперметр.
Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.
Соединение китайских модулей в БП.
Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.
Для наглядности рекомендуем к просмотру серию тематических видеороликов.
Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.
Регулируемый блок питания 2,5-24в из БП компьютера
Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.
Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.
Мне достался для переделки вот какой АТ блок.
Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.
Смотрите что написано на корпусе.
Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.
Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC — TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).
Рис №0 Распиновка микросхемы TL494CN и аналогов.
Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.
Приступим к работе.Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.
Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.
В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.
На фото разъём питания 220v.
Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.
На фото — черные конденсаторы как вариант замены для синего.
Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.
Самая ответственная часть работы.Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).
Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).
Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать
Рис. №2 Вариант доработки на примере схемы №1
На фото — приподнятием ножек ненужных деталей, разрываем цепи.
Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к «общему», но там уже стоит R=3k подключенный к «общему», это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).
На фото— перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.
Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.
Это был самой сложный пункт в переделке.
Делаем регуляторы напряжения и тока.
Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.
Контроль напряжения и тока.Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).
Амперметр я использовал свой, из старых запасов СССР.
ВАЖНО — внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все
Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.
Корпус прибора каждый сделает под себя.Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.
Какие бывают
Чтобы не допустить ошибки при выборе, необходимо четко и ясно понимать суть определений и видеть между ними разницу. Разберемся, в чем отличие лабораторных от обычных блоков питания, и что такое источник питания вообще:
- Простой блок питания – устройство электронного типа, используемое с целью сформировать заранее заданный показатель в одном или нескольких каналах. Отсутствует дисплей и блок управления. Типичным представителем является БП для компьютера небольшой мощности.
- Лабораторный БП регулярно формирует поток по одному или нескольким каналам. Оснащен дисплеем, защитой от некорректного использования, элементами управления, другим полезным функционалом.
Виды источников питания таковы:
- первичные;
- вторичные.
Представители первого варианта осуществляют преобразование неэлектрических видов энергии в электрическую. К ним относятся батарейки, солнечные батареи, ветрогенераторы и многое другое. Вторичные ИП служат для преобразования одного вида электроэнергии в другой с целью обеспечить желательные параметры частоты, пульсаций и тому подобное. К этой группе относятся:
- преобразователь АС/DC;
- преобразователь DC/DC;
- трансформаторы;
- стабилизаторы потоков;
- ЛБП.
Касательно лабораторных блоков питания, они разнятся характеристиками и разновидностями. Остановимся на этом вопросе более подробно:
Различия | Описание |
---|---|
По принципу функционирования | Импульсные и линейные. |
Рабочие диапазоны | Наличие автоматического ограничения мощности или фиксированные. |
Количеством каналов | Многоканальные и одноканальные. |
Наличием защиты | С функцией защиты от перегрева, перепадов, от перегрузки по току и так далее. |
Мощностью | Значительной мощности или стандартные. |
Способами изоляции каналов | Неизолированные или изолированные гальваническим путем. |
Выходным сигналом | Переменным или постоянным напряжением и током. |
Способами управления | Программное наряду с ручным или просто ручное. |
Дополнительным функционалом | Наличие встроенного презиционного мультиметра, доводит до нужного уровня потоки в проводах подключения, изменяет выход установленных значений, активизирует выход по таймеру, присутствие встроенной электронной нагрузки и так далее. |
Степенью надежности | Продуманный внешний вид, качественность элементной базы, тщательный выходной контроль. |
СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ
А. ПОГОРЕЛЬСКИЙ, пос. Пойковский Тюменской обл.
Описываемый блок питания собран из доступных элементов. Он почти не требует налаживания, работает в широком интервале подводимого переменного напряжения, снабжен защитой от перегрузки по току.
Предлагаемый блок питания позволяет получать выходное стабилизированное напряжение от 1 В почти до значения выпрямленного напряжения с вторичной обмотки трансформатора (см. схему). На транзисторе VT1 собран узел сравнения: с движка переменного резистора R3 на базу подается часть образцового напряжения (задается источником образцового напряжения VD5VD6HL1 R1), а на эмиттер — выходное напряжение с делителя R14R15. Сигнал рассогласования поступает на усилитель тока, выполненный на транзисторе VT2, который управляет регулирующим транзистором VT4.
При замыкании на выходе блока питания или чрезмерном токе нагрузки увеличивается падение напряжения на резисторе R8. Транзистор VT3 открывается и шунтирует базовую цепь транзистора VT2, ограничивая тем самым ток нагрузки. Светодиод HL2 сигнализирует о включении защиты от перегрузки потоку.
Как подобрать компоненты
Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).
Площадь сердечника для разных типов трансформаторов.
Мощность вычисляется по формуле:
P=S2/1.44 где:
- P-мощность в Ваттах;
- S- сечение в квадратных сантиметрах.
Для практических целей мощность надо еще умножить на КПД. Для примера, трансформатор с площадью сердечника 6 кв.см. при напряжении 35 вольт и выходном напряжении стабилизатора 30 вольт (общий КПД можно взять 0.75) способен отдать мощность P=(36/1.44)*0.75=18.75 ватт. Наибольший ток при этом составит I=P/U=18.75/35=0,5 А.
Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:
- определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
- эта величина умножается на необходимый уровень напряжения.
Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.
Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.
Транзистор | Наибольший ток коллектора (постоянный), А |
---|---|
КТ818 (819) | 10 |
КТ825 (827) | 20 |
КТ805 | 5 |
TIP36 | 25 |
2N3055 | 15 |
MJE13009 | 12 |
При работе в режимах, близких к максимальному току, транзисторы обязательно должны быть установлены на радиаторах.
Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:
- габариты конденсатора;
- бросок тока на заряд, который может быть значительным при большой емкости.
Выходной конденсатор БП может иметь емкость около 1000 мкФ.
Плюсы и минусы
К плюсам можно отнести относительно небольшой вес устройства, довольно большой коэффициент полезного действия. Если сравнивать итоговую сумму, которую можно потратить приобретая комплектующие с заводским аналогом, то такой бп очень выгоден за счет маленькой стоимости.
Также стоит отметить в плюсах широкий интервал напряжения питания. Кроме этого, в блоке питания могут быть встроенные датчики блокирования, на случай если устройство вдруг перегреется.
Помимо плюсов у этого устройства есть и минусы. Самым главным является создание помех, которые потом уходят в окружающий мир. Это происходит во время преобразования импульсов в пониженное напряжение. После того, как начинают появляться помехи, возникает необходимость подавить помехи.
Что нужно учитывать
Детали
Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:
- трансформатор;
- преобразователь;
- индикатор (вольтметр и амперметр).
- транзисторы и прочие детали, необходимые для создания качественной электрической сети.
Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит. К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП. Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.
Простая схема сборки
Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:
- она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
- простой тип сборки и дальнейшей настройки;
- здесь нижний предел для напряжения составляет 0,05 вольт;
- двухдиапазонная защита для показателя тока (на 0,05 и 1А);
- обширный диапазон для выходных напряжений;
- высокая стабильность в функционировании преобразователя.
Диодный мост
В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.
Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон
Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования
Общее описание
Слово «лабораторные» применяется неспроста, так как их главное предназначение – помогать в лабораториях. Они «живут» там постоянно и даже не транспортируются для проведения ремонта в посторонних помещениях. Специалисты не рекомендуют использовать устройство на открытом воздухе или в автомобиле. Лабораторные также подразумевают корректировку параметров и точную установку показателей.
Продукция российского производства имеет сертификаты соответствия, проходит регулярные поверки, что приводит к удорожанию ее использования. Данные БП могут допустить незначительную погрешность, отличаются надежностью и эффективностью работы, а также длительным сроком эксплуатации.