Современные корпуса подшипников
Сегодня процесс производства позволяет изготовить механизм с какой-нибудь дополнительной деталью или в виде отдельного изделия. Разнятся корпуса и системой крепления подшипника внутри корпуса, например, он может быть закреплен на лапках. Это зависит от типа детали.
Корпуса подшипников качения, скольжения и других видов производится из высококачественных материалов. Это может быть чугун, прессованная или штампованная сталь, синтетический каучук.
На современном рынке подшипниковых узлов преобладают элементы механизма импортного производства. Их популярность объясняется все большим количеством различного зарубежного оборудования. Оно требует в процессе эксплуатации подшипников узлов определенного типа, которые наше производство не выпускает.
Современные корпуса подшипников
Сегодня процесс производства позволяет изготовить механизм с какой-нибудь дополнительной деталью или в виде отдельного изделия. Разнятся корпуса и системой крепления подшипника внутри корпуса, например, он может быть закреплен на лапках. Это зависит от типа детали.
Корпуса подшипников качения, скольжения и других видов производится из высококачественных материалов. Это может быть чугун, прессованная или штампованная сталь, синтетический каучук.
На современном рынке подшипниковых узлов преобладают элементы механизма импортного производства. Их популярность объясняется все большим количеством различного зарубежного оборудования. Оно требует в процессе эксплуатации подшипников узлов определенного типа, которые наше производство не выпускает.
Подшипники с разъемными обоймами
Для несения повышенных осевых и радиально-осевых нагрузок применяют подшипники с разъемной в экваториальной плоскости наружной (рис. 757, а) или, реже, внутренней (вид б) обоймой. Разъем позволяет увеличить число шариков и углубить беговые канавки.
При чисто радиальной нагрузке в подшипниках этого типа образуются три точки контакта — две на разъемной и одна на целой обойме (отсюда их условное название «трехконтактные» подшипники). Правильное качение шариков одновременно по трем поверхностям, разумеется, невозможно. Тормозящиеся двухточечным соприкосновением с разъемной обоймой шарики проскальзывают по целой обойме, поэтому трехконтактные подшипники применяют для несения осевой нагрузки или радиальной при одновременном действии осевой. Осевая нагрузка прижимает шарики лишь к одной поверхности (вид в), на другой стороне шарики отходят от поверхности беговой дорожки, и в итоге получается двухконтактный подшипник.
Угол β контакта зависит от соотношения радиальной и осевой нагрузки. При чисто осевой нагрузке в исполненных конструкциях β = 20—30°.
Разъемные обоймы обычно стягивают крепежными гайками, причем взаимное центрирование обойм происходит по посадочной поверхности.
Подшипники, предназначенные для несения чисто осевых нагрузок, устанавливают в корпусах с радиальным зазором. В этом случае применяют подшипники с полуобоймами, соединенными наглухо с помощью гильзы, завальцованной на торцы (вид г).
Роликовые направляющие
Роликовые направляющие самые простые в плане устройства и монтажа направляющие,
кстати, можно встретить ещё следующие названия этих направляющих,
такие как полозья для выдвижных ящиков или полозки. Цена их
небольшая, в среднем 50-100 руб. за пару. Выглядят роликовые направляющие как на фото ниже, наверняка вы их видели, и не раз.
Рис. 1. Роликовые направляющие для ящиков |
Покрыты роликовые направляющие прочной эпоксидной эмалью, встречаются в продаже направляющие разных цветовых расцветок, самые распространенные направляющие цвета крем. Можно найти роликовые направляющие для ящиков глубиной от 250 до 800 мм, то есть практически на все случаи.
Роликовые направляющие выдерживают динамическую нагрузку до 25 кг, вряд ли вы будете хранить что-то более тяжелое в комоде или в ящике в шкафу купе. Минусы роликовых направляющих это шум с которым они выдвигаются и закрываются, выдвижение частичное. Но низкая цена нивелирует эти недостатки.
Если неправильно рассчитать и установить роликовые направляющие, то они довольно быстро выйдут из строя, ролики сотрутся,
изогнутся или даже сломаются, ящик при выдвижении будет заедать или вовсе не выдвигаться.
Согласно схеме монтажа зазор между наружной частью боковой стенки ящика и боковины корпуса изделия должна составлять 12,5 мм или 25 мм на две стороны, обычно при расчетах принимают 26 мм. Это значит, что габариты ящика по ширине должны быть меньше внутреннего пространства тумбы на 25-26 мм.
Рис. 2. Схема монтажа роликовых направляющих для ящиков |
Рис. 3. Установка ящика на роликовых направляющих в тумбу |
Подробно о том какие бывают роликовые направляющие, как рассчитать с помощью несложной программы, о способах использования, в том числе необычных, читайте в статье о
роликовых направляющих для ящиков.
Разберем, что представляет собой конструкция съемника для подшипника
Съемник для подшипника — это приспособление, как правило, выполненное из стали и состоящее из нескольких лап захвата и металлического стержня. Такой вид инструментов применяется для жесткого захвата подшипника с целью снять его. Процесс снятия подшипника происходит за счет стягивающего усилия. От качества конструкции зависит легкость работы съемника и отсутствие риска травм. Виды механических съемников:
- Съемники с двумя лапами захвата.
- Съемники с тремя лапами захвата.
- Внутренние съемники.
Съемники с двумя лапами захвата это довольно простой и надежный механизм. Выполнен из сплавов стали высокой прочности. Позволяет легко контролировать процесс работы.
Съемники с тремя лапами захвата это те же съемники с двумя лапами, но усовершенствованные. Как правило, выполнены из инструментальной стали твердых сплавов.
Внутренние съемники используются для снятия валов муфт, когда деталь прочно прикреплена к конструкции.
Также существует еще один негласный вид съемника — это специальный. Как правило, с помощью него снимают генераторы, цилиндры, моторы. Такие съемники эксклюзивные, изготовлены по вашим конкретным размерам. В этом главный плюс такого изделия, вы можете быть уверены, что съемник на все сто процентов выполняет свои обещания.
Сегодня мы разберем, как сделать надежный, а главное простой съемник, который вас выручит в трудную минуту. Для этого нам понадобятся:
- Кусок толстой трубы.
- Пластина из стали.
- Гайка, болт.
- Краска.
- Стержень.
- Сварочный аппарат.
- Болгарка.
- Дрель.
- Токарный станок.
- Шлифовальный диск.
Маркировка корпуса в зависимости от конструкции
Корпус подшипника может быть обозначен различной маркировкой в зависимости от типа узла. Изготовленный для радиальных деталей, которые устанавливаются во фланцевые узлы, механизм крепится установочными винтами. Подшипник в них обозначается UC, а корпус для них бывает F, P, Т, FL, FC. Если этот узел соединен воедино, деталь будет иметь вид, например, UCP, UCT, UCFL.
Для опорных конструкций корпус обозначается как SD, а сам подшипник – SN.
Приобретать подобные изделия лучше у непосредственного представителя того или иного производителя. Это гарантирует качество приобретаемых деталей.
Общая характеристика
Корпус подшипника представляет собой особую деталь. Она обычно изготавливается из чугуна или других сплавов. Применяется подшипниковый корпус для посадки основного вала на главную платформу. Он плотно фиксирует деталь.
Корпус и собственно подшипник – качения, скольжения и других разновидностей – вместе создают узел. Его легко отыскать в оборудовании и технике предприятий всех промышленных отраслей.
Так как видов представленной детали разработано довольно много, корпусов для них существует еще больше. Причем производители готовы выпускать как изделия стандартной конфигурации, так и корпуса под подшипники особой формы. В последнем случае создается индивидуальный чертеж, на основе которого мастер изготавливает требуемую деталь. Это позволяет обеспечить соответствие узла существующим условиям производства.
Общая характеристика
Корпус подшипника представляет собой особую деталь. Она обычно изготавливается из чугуна или других сплавов. Применяется подшипниковый корпус для посадки основного вала на главную платформу. Он плотно фиксирует деталь.
Корпус и собственно подшипник — качения, скольжения и других разновидностей — вместе создают узел. Его легко отыскать в оборудовании и технике предприятий всех промышленных отраслей.
Так как видов представленной детали разработано довольно много, корпусов для них существует еще больше. Причем производители готовы выпускать как изделия стандартной конфигурации, так и корпуса под подшипники особой формы. В последнем случае создается индивидуальный чертеж, на основе которого мастер изготавливает требуемую деталь. Это позволяет обеспечить соответствие узла существующим условиям производства.
Особенности эксплуатации
Корпус под подшипник должен обеспечивать всему узлу требуемые параметры работы. Он функционирует при больших нагрузках и не должен при этом создавать повышенный уровень шума. Экстремальные условия эксплуатации узла не должны снижать долговечность корпуса и всего механизма.
В зависимости от назначения, различают большое количество типов конструкций. Каждый производитель маркирует их по-своему. Можно выделить самые популярные компании-производители.
Корпус имеет сферическую форму под установку самого подшипника. Это дает возможность элементам механизма устанавливаться самостоятельно. Между подшипником и корпусом устанавливаются маслоотталкивающие уплотнения из резины в форме колец.
Выбор посадки подшипников качения
Среди основных параметров определяющих посадки подшипников:
- характер, направление, величина нагрузки, воздействующей на подшипник;
- точность подшипника;
- скорость вращения;
- вращение или неподвижность соответствующего кольца.
Ключевое условие, определяющее посадку – неподвижность либо вращение кольца. Для неподвижного кольца подбирается посадка с малым зазором и постепенное медленное проворачивание считается положительным фактором, уменьшающим общий износ, препятствующим местному износу. Вращающееся кольцо обязательно сажают с надежным натягом, исключающим проворот по отношению к посадочной поверхности.
Следующим важным фактором, которому должна соответствовать посадка под подшипник на валу или в отверстии, является вид нагружения. Различают три ключевых типа нагружения:
- циркуляционное при вращении кольца относительно постоянно действующей в одном направлении радиальной нагрузки;
- местное для неподвижного кольца относительно радиального нагружения;
- колебательное при радиальной нагрузке колеблющейся относительно положения кольца.
Согласно ГОСТ 520 степени точности подшипников в порядке их увеличения соответствуют пяти классам 0,6,5,4,2. Для машиностроения при нагрузках невысокой и средней величины, например для редукторов, обычным является класс 0, который не указывается в обозначении подшипников. При более высоких требованиях к точности используется шестой класс. На повышенных скоростях 5,4 и только в исключительных случаях второй. Пример обозначения подшипника шестого класса 6-205.
В процессе реального проектирования машин посадка подшипника на вал и в корпус выбирается в соответствие с условиями работы по специальным таблицам. Они приведены в томе втором Справочника конструктора-машиностроителя Василия Ивановича Анурьева.
Для местного типа нагрузки таблица предлагает следующие посадки.
При условиях циркуляционного нагружения, когда радиальное усилие воздействует на всю дорожку качения, учитывают интенсивность нагружения:
Значение коэффициента k1 при перегрузках менее, чем в полтора раза, небольшой вибрации и толчках принимают равным 1, а при возможной перегрузке от полутора до трех раз, сильных вибрациях, ударах k1=1,8.
Значения k2 и k3 подбираются по таблице. Причем для k3 учитывают соотношение осевой нагрузки к радиальной, выраженное параметром Fc/Fr x ctgβ.
Соответствующие коэффициентам и параметру интенсивности нагружения посадки подшипников приведены в таблице.
Обработка посадочных мест и обозначение посадок под подшипники на чертежах.
Посадочное место под подшипник на валу и в корпусе должно иметь заходные фаски. Шероховатость посадочного места составляет:
- для шейки вала диаметром до 80 мм под подшипник класса 0 Ra=1,25, а при диаметре 80…500 мм Ra=2,5;
- для шейки вала диаметром до 80 мм под подшипник класса 6,5 Ra=0,63 а при диаметре 80…500 мм Ra=1,25;
- для отверстия в корпусе диаметром до 80 мм под подшипник класса 0 Ra=1,25, а при диаметре 80…500 мм Ra=2,5;
- для отверстия в корпусе диаметром до 80 мм под подшипник класса 6,5,4 Ra=0,63, а при диаметре 80…500 мм Ra=1,25.
На чертеже также указывают отклонение формы места посадки подшипников, торцовое биение заплечиков для их упора.
Пример чертежа, в котором указана посадка подшипника на валу Ф 50 к6 и отклонения формы.
Значения отклонений формы принимаются по таблице в зависимости от диаметра, который имеет посадка подшипника на валу либо в корпусе, точности подшипника.
На чертежах указывают диаметр вала и корпуса под посадку, например, Ф20к6, Ф52Н7. На сборочных чертежах можно просто указывать размер с допуском в буквенном обозначении, но на чертежах деталей желательно кроме буквенного обозначения допуска приводить и его численное выражение для удобства рабочих. Размеры на чертежах указываются в миллиметрах, а величина допуска в микрометрах.
Самодельный корпус для подшипника
Сделать корпус для подшипника своими руками не так уж и сложно.
Хорошим материалом для изготовления корпуса является графитированный капролон. Он отличается повышенной износостойкостью, прочностью и скольжением. Выпиливать отверстие нужно, зажав материал в тиски. Дрелью, ножом и напильником следует сделать в капролоне ровное отверстие.
Вовнутрь следует вставить скользящую прокладку. Корпус лучше сделать разрезным и зажать его при помощи винта на вале. Чем ровнее получится отверстие, тем лучше будет работать деталь.
Случается, корпус выполняется даже из дерева. Кольцо делается из секторов, которые потом стягиваются воедино. Это автоматически компенсирует люфт подшипника.
Рассмотрев разновидности и устройство такой детали, как корпус подшипника, можно понять принцип его работы и выполнить самостоятельный ремонт довольно большого количества техники в домашних условиях.
Современные корпуса подшипников
Сегодня процесс производства позволяет изготовить механизм с какой-нибудь дополнительной деталью или в виде отдельного изделия. Разнятся корпуса и системой крепления подшипника внутри корпуса, например, он может быть закреплен на лапках. Это зависит от типа детали.
Корпуса подшипников качения, скольжения и других видов производится из высококачественных материалов. Это может быть чугун, прессованная или штампованная сталь, синтетический каучук.
На современном рынке подшипниковых узлов преобладают элементы механизма импортного производства. Их популярность объясняется все большим количеством различного зарубежного оборудования. Оно требует в процессе эксплуатации подшипников узлов определенного типа, которые наше производство не выпускает.
Виды съемников подшипников ступицы
Изучите сводную таблицу, в которой представлены несколько основных типов ССП, а так же конкретные рекомендуемые модели.
Тип и модель | Применение | Средняя цена, руб. |
С 3-лапами | Снятие деталей с осей и валов, в том числе обойм шарикоподшипников задних ступиц. | 2000-3000 |
С 2-лапами | Снятие деталей с осей и валов, в том числе подшипников ступиц задних колёс. | 1000-2000 |
Чашечный с набором оправок | Снятие и запрессовка деталей в отверстия, в том в поворотные кулаки и подшипники ступиц передних колес. | 6000-8000 |
Какие съемники нужны для снятия и запрессовки ступичных подшипников
Для переднего и заднего колеса рекомендуется использовать два вида инструмента: с тремя или двумя лапами и чашечный съемник – это минимальный набор съемного инструмента для правильного и безопасного снятия и запрессовки деталей ступичных узлов.
Съемник ступиц и подшипников для автомобилей ВАЗ и LADA
Для замены переднего и заднего ступичного узла на ВАЗах согласно рекомендациям завода-изготовителя нужны два типа съемных устройств.
- Для съема шарикоподшипника у заднего колеса применяются захватные инструменты.
- Для спрессовки и запрессовки подшипник у переднего колеса применяют чашечные типы.
Выбрать модели данных инструментов можно из обзора представленного выше. Для выбора чашечного съемника, ориентируйтесь на внешние и внутренние диаметр ваших подшипников, но как правило достаточно почитать отзывы и получить консультацию продавца.
Для автомобилей ВАЗ, например, подойдет модель Force 9T0311, AV Steel AV-922722, MHRTOOLS MHR04039, NEO 11-829. Подойдут для запрессовки подшипников в заднюю или переднюю ступицы, а также в поворотный кулак. С обратной стороны вставляют шайбу, зажимают гайку, ставят ключ на задержку. Затем вращают гайку штока по часовой стрелке.
Маркировка корпуса в зависимости от конструкции
Корпус подшипника может быть обозначен различной маркировкой в зависимости от типа узла. Изготовленный для радиальных деталей, которые устанавливаются во фланцевые узлы, механизм крепится установочными винтами. Подшипник в них обозначается UC, а корпус для них бывает F, P, Т, FL, FC. Если этот узел соединен воедино, деталь будет иметь вид, например, UCP, UCT, UCFL.
Для опорных конструкций корпус обозначается как SD, а сам подшипник – SN.
Приобретать подобные изделия лучше у непосредственного представителя того или иного производителя. Это гарантирует качество приобретаемых деталей.
Корпус подшипника без токарного станка: опыт соседа
Лично мне эти знания полезны совершенно в другом направлении: ось ветряка, шатуны самодельного парового двигателя, да мало ли что ещё: у соседа продолжается проект «прицеп для мотоблока» и в этот раз он пришёл в гости с готовым узлом в задний мост вместо редуктора:
Так-то всё просто : замеряется длина внешней окружности подшипника и вырезается лишняя полоска металла у трубы, после чего подшипник помещается внутрь, а вся заготовка в тиски и с помощью молотка и такой-то матери внешняя труба подгоняется под необходимый размер
Всё? ещё нет: чтобы подшипник не выпал из корпуса — в трубе сделаны пропилы и «усики» загнуты внутрь при помощи молотка и волшебного заклинания (без него метод не работает):
Так как у Сергеича в корпусе два подшипника, то между ними потребовалось установить распорную втулку, повторив мероприятия выше: труба меньшего диаметра, выборка лишнего и. никакой сварки, это просто «распорка», чтобы подшипники внутри обоймы не гуляли.
Финал сборки — установка внутренностей и завальцовка узла с противоположной стороны.
Прошлая статья из «сериала» про прицеп для мотоблока: ссылка
Источник
Преимущества не смазываемых и смазываемых корпусов
Сегодня производители выпускают как смазываемые, так и не смазываемые корпуса для подшипников. Корпус подшипника, чертеж которого разработан для стандартных смазываемых повторно узлов, имеет в себе масленку.
К преимуществам непополняемых дополнительной смазкой корпусов можно отнести экономию на техобслуживании, компактность конструкции. В таких деталях отсутствует вероятность утечки масла. Это приводит к повышенной чистоте детали.
Смазываемые повторно корпуса эксплуатируются при больших температурах и в большой запыленности окружающей среды. Если нет возможности использовать деталь с крышкой, такой узел применяется в условиях попадания на него брызг воды или других жидкостей.
При нерегулярности использования такого корпуса подшипник будет работать должным образом. Такие детали применяются при ускоренном ходе узла, при повышенных нагрузках и потребности снизить шум при работе.
Крышки и уплотнения для подшипников
Осевое положение вала в корпусе определяется с помощью торцовых крышек. Торцовые крышки должны быть достаточно прочными, чтобы выдержать осевые нагрузки, передаваемые валами через наружные кольца подшипников.
Крышки подшипников изготовляют из чугуна марки СЧ15. Различают крышки глухие и с отверстиями для прохода валов (рис. 13). Крышки изготовляются с центрирующим выступом и без него. Центрирующий выступ обычно контактирует с наружным кольцом подшипника для фиксирования положения вала в корпусе. Наружный диаметр выступа равен диаметру расточки под подшипник по посадке h9, а внутренний соответствует размеру t в стакане. Толщина и наружный диаметр фланца, диаметр, на котором расположены отверстия, и их количество определяются так же, как для стакана.
Рис. 13. Уплотнения валов, размещаемых в крышках: а – манжетное; б – щелевое (l=0,2…0,4; t=4,5…6; r=1,2…2); в – центробежное; г – лабиринтное (l=0,2…0,4; f1=1…2; f2=1,5…3)
Если крышка не контактирует с подшипником, то она может быть выполнена без центрирующего пояска (плоской). Если крышка выполнена с отверстием для прохода вала, то она отличается тем, что в ней, как правило, предусматривается место для установки уплотнения, которое защищает подшипник от попадания грязи и от вытекания смазки (рис. 13, а). Наличие уплотнения и деталей крепления подшипника на валу определяет в осевом сечении конфигурацию торцовой наружной и внутренней поверхности крышки (рис. 13).
Так как щелевые уплотнения недостаточно надежно защищают подшипники от попадания пыли и грязи, то их применяют для подшипников качения машин, работающих в чистой и сухой воздушной среде. Лабиринтные уплотнения (рис. 13, в) – самые надежные, особенно при больших частотах вращения валов. Уплотнения, основанные на действии центробежной силы (рис. 13; а, в, г), применяют в качестве наружных и внутренних. В ответственных случаях применяют комбинированные уплотнения (в). Уплотнения манжетные резиновые для валов приведены в табл. 4.
Таблица 4. Уплотнения манжетные резиновые для валов
Манжета резиновая армированная, мм | d | D | h1 | h2 |
![]() |
20; 21; 22 | 40 | ||
24 | 41 | |||
25 | 42 | |||
26 | 45 | |||
30; 32 | 52 | |||
35; 36; 38 | 58 | 10 | 14 | |
40 | 60 | |||
42 | 62 | |||
45 | 65 | |||
48; 50 | 70 | |||
52 | 75 |
Для предотвращения вытекания смазочного материала из корпуса редуктора или выноса его в виде масляного тумана и брызг применяют различные уплотняющие материалы и устройства. Разъемы составных корпусов герметизируют специальными мазями, наносимыми на плоскости разъема перед сборкой корпуса. Во фланцевых соединениях, когда положение фланца не определяет осевой зазор в подшипниковом узле, могут применяться также мягкие листовые прокладочные материалы.
В настоящее время для герметизации фланцевых соединений широко применяют уплотнения в виде резиновых колец круглого сечения (рис. 14, а).
Для герметизации стыков типа фланец-корпус с центровочным буртом применяют установки колец в канавку (рис. 14, б), в торец (рис. 14, в) и в фаску (рис. 14, г). Установка колец в канавку занимает больше места в осевом направлении, но удобна при совмещении с регулировочными прокладками между фланцем и корпусом для осевого зазора, поскольку в этом случае изменение толщины прокладок не связано с деформацией сечения кольца, которым производится уплотнение по посадочной поверхности. Размеры установочных мест под резиновые уплотнительные кольца круглого сечения приведены в табл. 5. Эти же кольца можно применять для нецентрованных плоских стыков (не обязательно круговых). Для этого на одной из соединяемых деталей должна быть выполнена канавка. Пример кругового уплотнения показан на рис. 14, д.
Таблица 5. Размеры сечений круглых колец и установочных мест для них
Размеры | Диаметр кольца, d, мм | |||
2,5 | 3,0 | 3,6 | 4,6 | |
D | 24-54 | 25-100 | 28-205 | 36-260 |
b | 3,6 | 4,0 | 4,7 | 5,6 |
h | 1,85 | 2,35 | 2,8 | 3,7 |
с | 2,0 | 2,0 | 2,5 | 2,5 |
а | 3,5 | 4,5 | 5,0 | 6,0 |
е | 1,85 | 2,2 | 2,6 | 3,3 |
М | 3,3 | 4,2 | 5,0 | 7,2 |
Рис. 14. Уплотнение круглым кольцом
Подготовка деталей к присоединению
Для успешного выполнения работы необходимо создать комфортные условия. Лучше всего проводить закрепление опор в чистом помещении, где нет работающих станков, способных во время производственного процесса создать лишнюю пыль, стружку, грязь. Если установка проводится в комнате, где избежать негативного воздействия среды невозможно, деталь следует дополнительно накрыть бумагой или фольгой. Кроме этого, нужно предпринять и другие подготовительные шаги:
- • Заранее собрать все требующиеся запчасти, инструменты, инструкции для использования и монтажа.
- • Внимательно изучить имеющиеся чертежи конструкции, в которую планируется вмонтировать опорный узел.
- • Очистить все поверхности от пыли и других частиц.
- • Проверить, действительно ли форма и размер изделий совпадает с отверстиями в конструкции.
- • Непосредственно перед началом монтажных работ следует тщательно промыть опору, чтобы избавиться от заводского консерванта. Единственное исключение можно сделать, если узел заполнен специальной смазкой, необходимой для бесперебойной эффективной эксплуатации в дальнейшем.
Выполнив все процедуры, можно приступать к установке опорного подшипника на вал или в корпус. Может показаться, что перечисленные рекомендации не являются обязательными для выполнения, но в действительности плохо очищенные детали в процессе эксплуатации довольно быстро подвергнутся негативному воздействию и их работа будет нарушена. Вместе с тем пострадает весь механизм.
Силовой способ
Демонтаж остатков разрушенного шарикоподшипника нередко осложняется при невозможности загнать съемник. Если обойма осталась на месте, обычным съемником не за что зацепиться, при этом стянуть запчасть невозможно.
В таком случае удалить ее можно несколькими способами:
- Если не хватает много шариков и сепаратор пластмассовый. Разрушаем сепаратор ударами отвертки. После этого скатываем шарики в одно место — внутреннее кольцо легко снимается или выбивается.
- С металлическим сепаратором используем крепкую отвертку или пробойник. Ударами между шариками разрушаем сепаратор.
- Безнадежные агрегаты придется вырезать сваркой, демонтируя по частям.
- Удалению прикипевшего узла помогает его нагрев с последующим резким остужением водой. Окалина, которая держит деталь, растрескивается при изменении температуры.
- Приварить к плоскости подшипника металлический лист. После зажима детали в тиски легкими ударами по металлу стягиваем с ним и саму запчасть.
- Вместо металлического листа можно вварить болт в центральное отверстие. В этом случае воздействуем уже на него, раскачивая или вытаскивая прессом.
- Вместо потерянных шариков вталкивается подходящего размера болт, проворачивается, зацепляясь за канавку качения. Задача ремонтника — приложить достаточно усилия для вытаскивания «репки».
Основные приемы монтажа подшипников
При монтаже подшипников необходимо особо тщательно следить за чистотой рабочего места, монтажного инструмента и сопрягаемых деталей.
При сборке следует обратить внимание, чтобы на деталях были предусмотрены элементы, которые обеспечивали бы более точный и облегченный монтаж и демонтаж подшипника. Вот некоторые из них:
- на шейке вала и у расточки корпуса или стакана должны быть фаски;
- поверхность опорных шеек под подшипники качения с внутренним кольцом качения и без внутреннего кольца должна быть не ниже 46 HRC;
- диаметр шейки вала под посадку внутреннего кольца подшипника должен быть больше, чем диаметры предыдущих участков вала, чтобы кольцо подшипника свободно проходило через них.
В отдельных случаях допускают равенство номинальных диаметров участков вала, посадочного места и расположенного перед ним. Однако при этом обработка обоих участков должна быть выполнена с различными допусками так, чтобы нагретый в минеральном масле до t=100°С подшипник проходил свободно на посадочное место.
Посадка подшипников на валы, в гнезда корпусов деталей может быть выполнена вручную, с помощью ручных, гидравлических или пневматических прессов, с подогревом в горячем масле (80-90°С) или с охлаждением твердой углекислотой – сухим льдом (температура мину. 11-80°С).
Для запрессовки шарикоподшипника на шейку вала могут быть использованы ручные приспособления – монтажные стаканы и оправки (рис. 1; а, б, в). Применение оправок обеспечивает равномерную посадку подшипника на шейку вала, предотвращает перекос при установке и предохраняет подшипник от повреждений. Для запрессовки подшипников на валы, имеющие на конце резьбу, часто используют гаечные и винтовые устройства (рис. 1, г).
При всех способах монтажа подшипников на валы и в корпусы необходимо соблюдать следующие основные правила.
Прикладывать усилие запрессовки только к тому кольцу подшипника, которое устанавливается на посадочное место с натягом (рис. 1, д).
Рис. 1. Приспособление для запрессовки подшипников: а – запрессовка подшипника с помощью оправки и ручного пресса; б – с помощью стакана 1 и кольца 2; в – с помощью ручной оправки; г – с помощью гаечного устройства; 1 – гайка; 2 – корпус; 3 – шайба; 4 – державка
При одновременной установке подшипника на вал и в корпус усилие запрессовки передавать через оба кольца (рис. 1; б, в).
Для установки кольца подшипника на посадочное место без перекоса усилие запрессовки должно распределяться равномерно по всей торцовой поверхности кольца. Для этой цели следует пользоваться специальными монтажными оправками, трубами или кольцами. При установке подшипника при помощи молотка и медной выколотки необходимо наносить удары поочередно по всем точкам монтируемого кольца, причем каждый последующий удар наносить в диаметрально противоположной зоне торца кольца.
Не следует применять таких способов монтажа подшипников, при которых усилие запрессовки может передаваться на тела качения, а также не следует наносить удары молотком непосредственно по кольцам подшипников.
Монтажные приспособления должны быть выполнены так, чтобы при запрессовке подшипников усилия не передавались на сепаратор.
При прогреве подшипников, монтируемых на валы, следует применять ванны с электрическим подогревом или сдвоенные баки; один из баков (внутренний) наполняется маслом, а другой (наружный) – водой, которую доводят до кипения. Прогрев подшипников ведется в минеральном масле, нагретом до 80-90°С. Прогрев корпусов осуществляют погружением их в нагретое масло либо путем обдувки горячим воздухом.
Существенную роль в обеспечении нормальной работы подшипниковых узлов имеет правильное крепление колец подшипников на валу и в корпусе.
Вращающееся кольцо подшипника на валу не должно проворачиваться, так как это ведет к износу посадочных мест. Это достигается гарантированным натягом.
Для предотвращения перемещения под действием осевого усилия кольца закрепляются на валу с помощью специальных устройств.
При наличии больших осевых усилий и высоких угловых скоростей крепление колец подшипников должно быть особенно надежным. Следует помнить, что осевое крепление колец не может обеспечить закрепление их от проворачивания, если не предусмотрена надлежащая посадка.
Особенности крепления к корпусу
Существует несколько разновидностей посадки подшипника на вал в корпусе узла. Самыми распространенными сегодня из них выступают описанные ниже технологии.
Одним из самых распространенных является подшипник в корпусе на лапках. Он обладает возможностью смазывания и участвует в создании высокоскоростных механизмов. Это могут быть вентиляторы, системы аварийного энергосбережения, маховики. Отличительной их особенностью является способность работать при повышенных температурах.
Внутреннее кольцо также может закрепляться на валу при помощи стопорных винтов. Встречаются корпуса, внутреннее кольцо которых имеет коническое отверстие. Деталь крепится в нем при помощи закрепительной втулки.
Есть также корпуса, в которых установленное изделие закреплено особым эксцентриковым кольцом.